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INVERSE SCATTERING THEORY AND
PROFILE RECONSTRUCTION®*

1 Introduction

The customary procedure for constructing a theory for an electromagnetic scattering
phenomenon is first to assume some specific model for the scattering objact and then to calcu-
late the resultant scattered fields. This procedure is known as direcr scattering theory. The scat-
tered fields thus predicted are compared with the experimental scattering data and the specific

model is altered until theory and experiment agree according to some acceptable criterion.

A different approach is to assume only the general physical properties of the scattering
object and then to determine analytically the specific model using only the knowledge of the
incident fields and the scattering data. This procedure inverts the customary analysis of the
cause-and-effect relationship and so is known as /inverse scattering theory. This general problem
can be simplified if the scattering object is assumed to be an inhomogencous region, whose
index of refraction has only a one-dimensional spatial variation. This procedure is known as

profile reconstruction.

As with direct theory, various approximate methods have been usad to solve inverse
scattering problems, for example the physical-optics approximation'’ and linearization

methods'’. Several inverse scattering theories have been discussed in recent surveys.' ''

Manuscript submitted February 13, 1979
*This paper was presented at the International Conference on Antennas and Propagation, London, 28 November 1978




JORDAN AND AHN

Numerical solution to the time-domain integral equation for this problem has also been con-
sidered. In the present communication we discuss an inverse scattering theory that may be
called exact in the sense that it reconstructs refractive index profiles exactly starting from an

analytic expression for the reflection coefficient.

The general physical model which we consider is the scattering of electromagnetic waves
from a stratified ionized region, as shown in Figure 1; this model has been used to study ionos-
pheric radio wave propagation.* The effects of electron collisions and static magnetic fields

have been neglected so that the relative permittivity of the inhomogeneous region is

e(kx) _

1
i e 2
N 1 e q(x), x>0 1)

where €, permittivity of free space and k = w/c, the wave number in free space, and where
= radian frequency and ¢ = velocity of light. The profile function, ¢ (x), is proportional to the

electron density.

The time-harmonic amplitude, u{x,x), of the horizontally polarized electromagnetic field

E= a,E, satisfies the differential equation in the variable x

2

ﬁ u(k,x) + [x’ - q(x)]u(x.x) =0, )

where the spectral variable is the wavenumber in the x-direction, x = kcosf, wu(x,x) is the
Fourier transform of E, (ct,x), and r = time variables. The case of a vertically polarized field

will be discussed in Section 3.4.

The profile function ¢(x) in Eq. (2) will be assumed to be real, bounded, and piecewise
continuous in 0 £ x <oo with g(x) = 0 for x < 0. Thus it is possible to obtain a solution of
Eq. (2) which satisfies the asymptotic conditions

’(K)e—m\+ em\' .\,_‘_w'

U(X) = L r)e®s x—ioo.

@)
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The reflection coefficient, r(x), and transmission coefficient, T(x), are assumed to be
represented by analytic functions of x in the complex x-plane. From the conservation of
energy,

[r() |+ T() |2 =1, (5

where
[r () |2 = r(x)r(x) = r(x)r(- x),
[T()|? = T(k) T(k) = T(x) T(—x)

for real x , and where 7{x) means complex conjugate of r(«).

The inverse scattering problem can now be stated: Given the reflection coefficient r(x )
as an analytic function of the wave number «, find the self-consistent profile function ¢(x).

(Here self-consistent means that no further information is needed to find a unique profile.) We

will direct our attention to the analytic relationship between the reflection coefficient and the
profile function. The problem of the appropriate data processing to obtain the reflection

coefficient r(x) warrants a separate investigation.

The profile reconstruction method which we discuss here is an application of the inverse
scattering theory for reflection coefficients which are rational functions of the wave number.''
This theory was developed from the solution to the inverse Sturm-Liouville problem.® The

theory has also found applications in quantum scattering®® and non-linear wave propagation.'*

We will demonstrate the profile-reconstruction procedure by using a third-order rational
approximation' to r(x). The frequency variation of the reflection coefficient and the form of
the reconstructed profile resemble those that have previously been analyzed in connection with \

the solution to the direct ionospheric scattering problem.® In addition two more examples will

N T e T e e T e YN

be analyzed: r(x) has three poles, one of which represents a "bound state” which leads to a

S ama o]

negative profile, and r(x) has two poles and one zero, which leads to an oscillatory profile.

3




JORDAN AND AHN

These three examples and two previously published examples will be compared in order to
illustrate the relationships between the general forms of ¢(x) and the pole configurations of

rix).
2 Inverse Scattering Problem

The time-harmonic wave amplitude in the free-space region is
U (k, x) = e+ r{x)e™*, x 20 6)

where only the dependence on the x spatial coordinate is shown. The corresponding time-

dependent electric field is
E (x.ct) =8(x—ct) + R(x+ect), x €0, @)

where 8(x—cr) = incident 8-function impulse, and R (x + ct) = reflected transient.

The time-dependent field in the inhomogeneous region satisfies the differential equation

dE, d’E,
o hSiaa “”

The retarded electric field can be represented in terms of the electric field defined by Eq. (7)

with the transformation® !!

E(xen) = By en + [ K (0O E, (E.cndé, ©)

where the function K (x, §) also satisfies the differential equation (8) with the boundary condi-

tions
K(x, =x) = 0. (10)
dk"(t.:.,\') " %q(.\‘). an
4
- EET—
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For a wave moving toward the right, the retarded field satisties the condition

E (xct) =0, ¢t < . (12
s0 that equation (9) together with equation (7) provides the integral equation
RO+ + Kned + [ K ORE+ ) dg = 0. (13

If this equation can be solved for K (x, §), then Eq. (11) gives the solution to the inverse

scattering problem.

The integral equation (13) can be solved  exactly when 7(x) is a rational function of «.

considered as a complex variable. In this case the reflected field is

)

R(.\‘ + 1) - __l___ f~ ’(x)e NE u)dx _li r.e K, v (l‘)
2m - " B

ne|

where the integral represents the continuous spectrum of r(x) and the discrete spectrum is
represented by the sum over the poles, «,, il any, on the positive imaginary axis with the resi-
dues, r,. If ¢(x) > 0, as in the present model of ionospheric scattering, then r(x) has no
poles on the positive imaginary axis. If the poles of r(x) lie on the unit circle, then r(x) is the
mh-order Butterworth approximation and the integral equation (13) can be solved'® rather

casily.

The profile reconstruction method can be interpreted in terms of the space-time represen-
tation shown in Figure 2. A delta-function impulse is incident on the inhomogeneous region
and a reflected field and a transmitted field are produced. Using causality conditions, the fields
in the left and right half-planes can be reconstructed. In the left half-plane the total field is the
sum of the incident and reflected fields. In .he right half-plane the field can be represented by
a linear transformation of the free-space field. Causality for the backward light cone (time-like

region) says that the reflected field is not produced until the incident field arrives at x = ¢, i.e.

> s I e

ey e g =




JORDAN AND AHN

R(x +ct) = 0 for x + ¢t < 0. In the forward light cone (space-like region) the field is modified
only by the medium it has traversed, i.e., K(x,cr) =0 for ¢ > x. Substitution of this
representation of the field in the original wave equation provides the boundary condition which

gives the profile function ¢ (x).

3 Profile Reconstiuction

The reconstruction method can be demonstrated with a third-order rational approximation
to r(x), i.e. r(x) has three poles in the complex x-plane. The resultant profile function q(x)
resembles electron density profiles that have been analyzed by direct methods®. An alternate

method, which may be more convenient if 7(x) has only a few poles, will also be demonstrated.

3.1 Three-pole Reflection Coefficient

We consider the reflection coefficient

KKKy
(k = k) (k = k) (k — K3

r(x) =

a19s)

where x, = —k| = ¢, — ic; and x; = —ia. The normalization has been chosen so that r(Q) =
-1. Conservation of energy requires that

lr()|? < 1, (16)
this defines the regions for the allowed pole locations, shown in Figure 3 by the shaded portion.
The reflected energy density |r(x)|* is shown in Figure 4 as a function of x for the
configuration of poles shown in Figure 3; @ = 1.0, ¢, = 0.50, c; = 0.499. This configuration

is also shown in Figure 6.3.

The integral equation (13) can be reformulated'® without the assumption ¢t < x. The

"entire" electric field,

&E(x, cr) =K (x, ct) + 8(x, c1) —=E, (x, 1), an

— !
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satifies the integral equation

R(x+¢) +eln, o) +fm‘m : "&(\‘. ORE+NAE=0 (18)

and has the properties

E (xet) = = &, er), o > x, 19
& (xx)
elx) =2 ii%-& x>0, Q0)

so that equation (20) provides the solution to the profile reconstruction problem.

By using the complex variable s = /x, integral equation (15) is amenable to solution by a

Laplace transform lechnique" 12 which will be used in this section. The Laplace transform of

Eq. (19 s
A(s) e+ A(8) F(x, =) + Flx, 8) + G, s) =0, QD
where
AS) S r(s) = f“n R(x + §) e'f d¢§. Q2
Fio o) = [ K e tag, Q)
Gy, §) = _f\ Kix, §) e P dg. Q4

In the present example

N(s) -aC’?
A(s) = = - . 2%)
b D(s) (s+a) T+ 20,40 :
where C¥= ¢ +¢{ In general we can write
v, w,
N =T ns. D)= Fds' (26)
jl 1t
where the coefficients » and d, are real.
Equation (21) can be written
N(s) e™ + N(s) F(=s, x) + D(s) F(s, x) + D(s) G(s. x) =0, Qn

g —————————

2w o 2 A
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Al

However G(s, x) D(s) = g(s, x) e *is an entire function'® and we can write, using (24) and

since D(s) is a third-order polynominal,

A
e“G(s, x) = —= + ——; %
5 ) 5

>

e

, as §— oo, (28)

-

where

Ku - K(,l', .l‘), Kl - _4_&%’2_& I

fx*’
e &K (x, §) |
2 dfz ‘-"'
In general we find that
My by
gl )= s T dy +1-vK, _,. (23)
1= vl S
where
K = d' K (x, {)‘
" e A
We finally obtain
Fy(x, s)
F(.\. s) = m. (30)
where
Fy(x, s) = e N(s) g(=s. x) — N(s) D(=s) + ¢ “N(s) N(=s) =D(~s) g(s. x),
Fp(x, s) = D(s) D(—s) — N(s) N(-s).
Since F(x, s) is an enure function,,
K, = K(x, x) = lim |s| F(x, 5) e, 3D
so that ¢ (x) can be found from Eq. (11).
In the present example
g(s, x) = 5K, = 5y, — y,. 32)




B e
r—_“ |
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Yo=K+ (a +2c) K, + (C*+ 2cya) K, 33)
vi=K,+ (a +2c)K,.
Using (32) and (30) in (23), K(x, §) is found by an inverse Laplace transform. We can then

solve for K, and K, to obtain, after lengthy but straightforward calculation:

Yde "t (=124 (d,~K)r+g~d)

Er gy = 4ri(r1 -8y K

where the r's are solutions of

(12-8)2—8}=0, j=1,2 3, 4. (35)

TyI™ T, T4™ —T),
87 = % (a’ + 4cf) (a? - 4c}),
5, = % a®— (¢} - cd).
The graph of q(x) for the r(x) of Fig. 3 is shown in Figure S and is compared with other
examples in Figure 6.3. The completc formula for ¢(x) has been previously displayed;' the

analysis leading to this formula is summarized here.

3.2 Three-pole Reflection Coefficient with One "Bound State"

An example of a discrete as well as a continuous spectrum is furnished by a reflection
coefficient with the pole configuration shown in Figure 6.5. The symmetric poles on the unit
circle in the lower half-plane correspond to the two symmetric poles for the third-order Butter-
worth approximation, these poles represent the continuous part of the spectral function for the
differential equation (2); the pole on the positive imaginary axis represents the discrete part of
the spectral function:

==t

r(x) = . :
K+

Kl-%(\/j—l‘).

Ky = =K},

L o e SR e EEES T MRl P an a3 P s

K_\-I..
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The characteristic function, R(x), is found from (14) to be

; “Xa+ivh - ~X =D
l+64\/§ el 3 6u/5 - + _;_ e, (36)

where the first two terms represent the continuous part of the spectrum and the last term

R(x) = —

represents the discrete part of the spectrum.

We will use this example to demonstrate an alternate, but equivalent, technique'®'"-!* for

solving the integral equation (13). It is possible to construct a differential operator f(p),

p— ‘—f; such that £(p) R(x) = 0. For a three-pole reflection coefficient,

L) =p' 4 ik + ky+ k) pl— (kg + ke + KoKy P = KKKy an

s0 that in the present case, f(p) = p' — 1. The differential operator is applied to equation (13)

to obtain

f(p) K(x, ») + K(x, =y) =0, (38)

and by symmetry

F(=p) K(x, =») + K(x, y) = 0. (39)

The houndary conditions on K (x, ») are

K, » [yay =0, (40)
K'y) |ye v = R(X) |yo=0, (41)
Ky lar=R W) | o= -1 42)

Eliminating K (x, —») between equations (38) and (39) yields p® K (x, ) = 0, so that

K(x, ) = Cox) 38+ Cod) p* + Cix) p' 4 i) 14 Ci(x) p + Cox). (4d)

From equations (38) to (42) we obtain

x*=3 5, xt+e6x?

K(xp) = = =5 (0 4+ 120) + . 44) \
abdiuint ™ ru T i A R T YT :
s0 that the profile function is found from equation (17) to be
Wx(2x' = Y) )
W) e Q-0 S S)
q(x) x4+ D1 x 20 4
10
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As x — o g(x) = 1/x? which is the same asymptotic behavior as the profile function which
was derived from the second-order Butterworth approximulion“‘. There is a "potential well"
closer to v = 0 with one "bound state" or “characteristic mode" with the value ¢, = -1,
corresponding to the pole on the positive imaginary axis at k; = + « There is a simple check
on the number M of bound states which was obtained by Bargmann® for direct quantum scatter-

ing theory:

M < j‘:th (W dy € M + 1, (46)
where ¢ (x) is the portion of the profile function where ¢(x) < 0. After integrating by parts
between the limits 0< x <'V3/2, we can evaluate this integral 0 obtain M € 3-2In 2! so
that M = 1. (Positive and negative values of the profile function can be interpreted physically
in terms of the scattering of vertically polarized waves by an inhomogeneous dielectric region,

discussed in Section 3.4.)
3.3 Two-pole Reflection Coefficient with One Zero

A reflection coefficient with a zero a x=0 is shown in Figure 6.4. r(x) also has the

second-order Butterworth poles'’

(k) = —:-J-‘-
i K 4iV2k =1

The reconstruction method yields the profile function,

Q\'(.\')
x) ™ —— ¥ 20,
q ) N>
where
QN(.\') et m \/‘_
WA . - 75—[“— sinviv 4+ V6 cos Vix]
- "_\/?n" 5:_55_\/2 sinviv+VicosVix

11




JORDAN AND AHN

22 \/5\.

qpix) = (V24D e = (V2-1De - —\ﬁ—sm

Since r(x)|.., =0, there is a potential well for small x, however there are no bound states.
3.4 Vertical Polarization

If the electromagnetic field is vertically polarized so that H = 4, M,, then the timehar-

monic amplitude v(k, x) satisfies the differential equation

v(k, x) =0 . 47

d[l dv(A\)I (, k2sin? @
. o S————— A ————vre—
dx |e

This can be expressed in a form similar to Eq. (2) by using the local wave impedance W (x)

with the following transformation of variables

b /u..
W(x) )
ok x) = vik,x) VW),

X -f \/ o‘zfs d

(W'(x) W'(x)
x5 lzqu Luu)l

Some values of W'(x)/(2 W/(x)) can cause a negative ¢(x). W(x) can be found from Eq.

(30) and

W(0)

W(x) @« ————— |
&) = T Fe ol

(48)
where F(x, 0) = F(x, s) | ,ooand W(0) = W(x) | =0

4. Discussion

The general form of the profile function ¢(x) is related to the pole-zero configuration of
the reflection coefficient r(x). The continuous spectrum is represented by poles in the lower

half-plane. The "smoothness” of ¢(x) is determined by the number of poles and zeroes of

12
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r(x): If r(x) has M poles and no zeroes, then the M-2 derivative of ¢(x), and all lower
derivatives will be continuous at x = 0. This means that if r(x) has one pole, the correspond-
ing ¢(x) will be discontinuous at x = 0. If r(x) has two poles, then ¢(x) will be finite at x =
0 but will have an infinite slope. If 7(x) has three poles, both ¢(x) and ¢'(x) are continuous
at x = 0 but there is an "angle discontinuity”. If r(x) has a zero at x = 0, then ¢ (x) will have
a potential well since waves with small energy penetrate the medium and are not reflected
immediately. If a discrete spectrum is present, it can be represented by a pole on the positive

imaginary axis.

The examples shown in Figure 6 illustrate these properties:

1. The one-pole r(x) is a classic example'' and leads to the 8-function ¢(x) shown in Fig.

6.1.

2. The two-pole case, shown in Fig. 6.2; was previously analyzed'® for the second-order

Butterworth approximation. As x— oo, q(x) ~ 1/x2.

3. The three-pole example', shown in Fig. 6.3, has the asymptotic behavior qx) ~e ™ It
is interesting to note that as the third-pole Ky = —ia — —ioo, the resultant ¢(x) behaves

asymptotically like a ¢ (x) obtained from a general two-pole r(«x).

4. If r(x) has a continuous spectrum with one zero at x=0, as shown in Figure 6.4, then an
oscillatory profile function is obtained. However there is no discrete spectrum or “bound

state,” even though ¢(x) does become negative.

5. If a discrete spectrum is allowed, r(x) will have a pole on the positive imaginary axis, as '

shown in Fig. 6.5; the symmetric poles are taken here to lie on the unit circle. The resul-

13
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tant profile function has a “potential well". There will be a "bound state" or "characteristic
! mode " corresponding to the pole as the positive imaginary axis. The asymptotic behavior

as x — oo resembles that corresponding to the two-pole Butterworth case.
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List of Symbols
)2 = Cariesian space coordinates
t = time variable
¢ = velocity of light if free space
w = angular frequency for exp(iw?) time variation
i - V-1
E.H = electromagnetic field vectors
E, H, = ycomponent of E, H
B = £, in region x £ 0
4, = unit vector in »direction
0, = incidence angle
0 = gcattering angle
k = wave number in free space
x = wave number along x-direction or spectral variable
r = reflection coefficient
T = transmission coefficient
€ = permittivity of region x 2 0
€, = permittivity of free space
q = profile function
8 = Dirac delta function
s = jx, complex variable of integration
§ = variable of integration
R = reflected transient field or spectral function
K = transformation kernel function

3 L.,‘.‘;'m“ \



=

A R

A

"~

r.
€
€2
a
C
A4, F, G N, K,

& 8,n,d, 1,

NRL MEMORANDUM REPORT 3981

Fourier transform of £,
Fourier transform of H,
scalar amplitude related to v
local wave impedance

number of bound states
differential operator i
dx

function of p

"entire" electric field

poles of r(x) in complex x-plane

residues of r(x) are «,

Re(x,)

Im(x,)

Im(xy)

el + ¢}

auxiliary functions defined by Egs. (21)-(25)

auxiliary functions defined by Eqgs. (26)-(35)
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.,,"'Ol |
¢=¢°(l-k—2 q(x))

—

Eiﬂ

Fig | = Physical model for time-harmonic version of electromagnetic wave scattering by an
inhomogeneous ionized region in x > 0 Incidence angle = # and scattening angle = r
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REFLECTED WAVE IN SPACE-TIME REPRESENTATION
ct

LIGHT CONE

FUTURE
PAST

S(x-ct)

X

. INHOMOGENEOUS REGION

FREE SPACE

Fig. 2 — Space-time representation of scattering mode! of Figure 1
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x=x"+ix"

Fig 3 — Pole locations in complex x-plane for (k) of Example 3 1. Fquation (1)
The shaded region also includes the POSILVE IMAgINATY ans
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|r(a:)|2
0.5
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I
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!
00 0.5 1 1.5 2

K ——t

Fig. 4. — Reflected energy density, |r(x) 2, for Example 3.1.
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1=
q(x)
0.5
!
0 | 1
| 2
x——.

Fig. § — Profile function ¢ (x) for Example 3.1
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-— q(x)

(NOT TO SCALE)

8(x)

: i FELA
2 l:l/xZ:
3 / —\—e-uéx ’

e-%Xgin bx

Fig. 6 — Comparison of pole configuration of five examples of r(x) and their
corresponding profile functions ¢(x). The examples are listed in Section 4.
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